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Stress dependency on ultrasonic wave 
propagation velocity 
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The theory of wave propagation in a stressed solid was applied to the measurement of 
ultrasonic wave propagating velocity through tensile specimens of carbon steels containing 
0.2 to 0.5% C, and Murnaghan's third order elastic constants of both Eulerian and Lagrangian 
formulation were obtained for those steels. They were ten times as large as the second 
order elastic constants, and values of the Eulerian constant n in them largely changed with 
composition of specimens. It was found that there was a simple relation between the Eulerian 
and Lagrangian third order elastic constants. 

1. I n t r o d u c t i o n  
The measurements of higher order elastic constants 
were made by Lazarus [1] and Hearmon [2] on the 
single crystals of KC1, NaC1, CuZn, copper and alu- 
minium, Hughes and Kelly [3] on polystyrene, iron 
and pyrex glass, and many other workers [4-16] by 
use of ultrasonic waves. The measurement of residual 
stress has also been developed as an application 
research [17-19]. 

The theory of the change of ultrasonic wave veloc- 
ities propagating in stressed solids which was dealt 
with using the Murnaghan's third order elastic con- 
stants ('FOE constants) was reported in the previous 
paper [20]. 

In this paper, the measurement method of 
Murnaghan's TOE constants by a propagating ultra- 
sonic pulse was proposed and results obtained for 
both Eulerian and Lagrangian TOE constants for four 
carbon steels containing 0.2 to 0.5% C and the rela- 
tionship between the TOE constants by two formulae 
were described. 

2. Measurement principle 
The velocities of ultrasonic waves propagating in 
stressed isotropic materials can be expressed by the 
SOE and TOE constants [20]. On the basis of this 
theory, the authors determined the TOE constants by 
measuring the ultrasonic wave propagating velocities 
in unidirectional tensile stressed materials. In this 
case, high precision was needed for the geometrical 
form of the specimens, the measured values of stress, 
strain and ultrasonic wave velocities, and moreover 
the ambient temperature has also to be kept constant. 
The grip was the most troublesome part in the tensile 
stressed specimen. Since the waves of tensile direction 
passed through the complicated stress field of the grip 
section, the influence was unavoidable. In this experi- 
ment, two specimens which had identical grip length 

and cross-section of gauge region, but different gauge 
lengths, were prepared and the measurement data of 
wave velocities of the two specimens were used to 
eliminate the undesirable effect of the grip part. 

2.1. An ultrasonic wave propagating along 
the tensile stress direction 

The specimen shaped for tensile test, the coordinates, 
and the notation used in the formula are shown in 
Fig. 1. The ultrasonic wave sensor attached to the 
surface of the specimen end was used for measurement 
of the propagating time of the ultrasonic waves which 
enter from the left end and come back again by reflect- 
ing on the right end of the specimen. 

Let V~ be the propagating velocity of longitudinal 
wave, and VI2 be that of transverse one, 

where V 0 is the propagating velocity of longitudinal 
wave at non-stressed state, V0' is that of the transverse 
wave, ~1 is the relative change of longitudinal wave 
velocity, ~12 is that of transverse wave, a H is the 
applied stress and E is the Young's modulus of the 
specimens. The first number of subscript of V indi- 
cates the propagating direction and the second one the 
polarization direction. The propagating time of longi- 
tudinal wave along tensile axis, t is given by 

LG~ LQ (1 + ~rll/E ) 
t = - -  + - -  (2) 

¢,,o v0 (1 + ~,~.,,/E) 

Considering the grip and gauge region to be iso- 
lated, LQ is the gauge length of the non-stressed 
specimen, L G is the grip length of the non-stressed 
specimen, L~, is that of the stressed specimen, and 
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Figure 1 Specimen, coordinates, and notation used in the formula. 
x~, x2, x3; coordinate axes, F; tensile force, LG; grip length, LQ; 
gauge length, LT; total length of specimen. 

l?lm is the mean velocity of  the longitudinal wave 
propagating through the grip region. 

Since the stress at the grip region is very com- 
plicated, the first term of  Equation 2 should be elimi- 
nated and two specimens which have identical grip 
size but different gauge length were prepared for this 
reason. The subscripts a and b are used to distinguish 
above two specimens. Letting t0a , t0b be the wave 
propagating time of non-stressed specimens a and b, 
and ta, tb be those of  stressed ones, they are related by 

LTa LTb 
t 0 a -  Vo, t 0 b -  V0 

and Ata = t. - t0a, Atb = tb -- t0b where Ls. is the 
whole length of  non-stressed specimen a, and Lrb is 
that of non-stressed specimen b. LQ. and LQb also 
mean the gauge length of  non-stressed specimens a 
and b, respectively. The changing ratios of  the propa- 
gating time are 

Ata ( L o o / ~ , , o )  - ( L o / V 0 )  LQ. (1 - -  ~ , , )  < 1  

to, - (LT./Vo) + LTa - E  

_ LQb 0"11 Atb (L°*/~IG) - (LG/V°) + (1 -- ~ u ) -  
tob ( Lvb / Vo ) L,b E 

(3) 

The term concerning the grip region can be eliminated 
from Equation 3. 

Then 

(Zll : 1 - E FLTb (Atb) _ LTa (Ata ) ]  
O'l~ LAL \t-~b/ S L  \ t0. ] /  (4) 

where AL = LQb -- LQ. = Lvb -- Lva. In a similar 
manner, cq2 can also be derived for the transverse 
waves from the changing ratio of the propagating time 

E FLTb ( A t b ~  LTa ( A t a ~  7 
=12 = 1 - --o"11 L A L  \ tab / - -a--[ \ to--~./J (5) 

f~:::z 

/ 
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Figure 2 Tensile direction, wave propagating direction and coor- 
dinate. W; parallel part width. 

where t' is the propagating time of the transverse 
wave. 

2.2. An ultrasonic wave propagating along 
the direction perpendicular to tensile axis 

Three kinds of wave propagating along the direction 
perpendicular to tensile axis were considered as 

 0(1 

where 1/22 is the velocity of longitudinal wave propa- 
gating perpendicular to tensile axis, V2l is the velocity 
of transverse wave propagating along perpendicular, 
but polarizing parallel to the tensile axis, and V23 is the 
velocity of the transverse wave propagating along and 
polarizing perpendicular to tensile axis. 

The propagating time of  longitudinal wave, t is 

w(1 -- Vall/E ) 
t = V0(1 + e22a,,/E) (7) 

where w is the width of gauge region of non-stressed 
specimen, and v is Poisson's ratio. 

Fig. 2 shows the tensile direction, wave propagating 
direction and coordinates. Using the changing ratio 
of the propagating time described in the previous 
section, 

~22 = - v - - -  (8) 
(I'll 

and similarly for the transverse waves, 

~21 ~ --  Y --  - -  
a,  \ toJ 

~23 = - v - - -  - -  ( 8 ' )  

where to is the propagating time of the longitudinal 
wave in the non-stressed state, t~ and t~' are those of  
transverse waves whose polarization are parallel and 
normal to tensile axis, respectively. At/to, At'/t'o and 
At"/t'o' are the changing ratios of propagating time for 
each of  the above waves. 

2.3. The relative change of wave velocity and 
the third order elastic constant 

The relative changes ~1~ and c~22 are given by the 
Eulerian elastic constants (l, m, n) [20] as: 

1 
all -- [72 + 14# -- 6l 

2(2 + 2#) 

-- 2v(32 -- 6l -- 2m)] 

1 
c~22 -- 2(2 + 2#) [32 -- 6 l - -  2m 

- 2v(52 + 7/1 -- 61 - m)] (9) 
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From Equation 9 

V.7 _+_ 20(,, ] [-(32 - 2rn)q 
t = k6(1 _ 2v)J (2 + 2#) - v L3(1 2v)J 

m = - ( 2 + 0 ( " 1 ~ - - ~ 2 2 )  ( 2 + 2 / z ) -  3/~ (10) 

Since the measurement of propagating time was easier 
and steadier for a longitudinal wave than for a trans- 
verse wave, I and m were obtained from the data of 
longitudinal waves and Equation 10. The transverse 
waves were used to determine n and in this case V12 and 
V2I showed steady values. The relative changes, 0(12 and 
0(21 are given in the previous paper [20] as 

I m 1 2 + 2 # + - -  
0(12 - -  2# 2 

0(21 
1 2 + 4/~ + - -  

2# 2 

- v (22 + 2 # + m + 2 )  1 (11) 

Letting nt2 be the value obtained from 0(12, and Ft21 be 
the value from 0(2i, we have 

F/12 ~ Y 

/'/21 ~ y 

(12) 

n is only one for an isotropic solid, hence n12 = n21. 

2.4. Eulerian and Lagrangian TOE constants 
0(11, 0(22, 0(!2 and ~21 can be written with the Lagrangian 
TOE constants (l', rn', n') from the equation of 
Hughes and Kelly [3] as 

1 
~11 - [52 + 10# + 2l' 

2(2 + 2/~) 

+ 4m' - 2v(2 + 21')] 

1 
~ 2 2  - -  [ 2  + 2l' 

2(2 + 2#) 

- v(62 + 10# + 41' + 4m')] 

1 I m' 0(t2 = ~ 2 + 4 / ~ +  

- v ( a 2 + a # + a m " - ~ ) 1  

1 I m' ~21 = -~# 2 + 21t + 

- v(22 +41.t+ 2 m ' - - ~ ) ]  (13) 

Since the values of c~ can be experimentally obtained, 
those of Equations 11 and 13 are identical. 

Therefore the Lagrangian TOE constants are 

35mm 60 and 110ram 
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Figure 3 Dimension of test specimen. 

A - A  

related to the Eulerian TOE constants as 

or  

1' = - 2 2  + 3 l +  m 

m 
m' = - 2 2  - 6# 2 

n' = - 1 2 F  + n 

I = 2(2 + 2#) + ½(l' + 2m') 

m = - 4 2  - 1 2 # -  2m' 

n = +12/z + n' 

(14) 

(15) 

3. E x p e r i m e n t a l  d e t a i l s  
3.1. Test  s p e c i m e n  
The carbon steel samples were shaped for tensile test 
as shown in Fig. 3. 

The precision of machining of the samples largely 
affects the measurement of wave velocity, therefore 
they were finished to within 2 x 10-6m of planeness 
and within 5 x 10 6m of parallelism. The size of test 
specimens was designed to be as large as possible 
to make the propagating path of the acoustic wave 
longer and to obtain precise measurements. The two 
types of specimen were prepared to eliminate the effect 
of grip region, which were identical in each dimension 
except the length of the gauge region. The four kinds 
of carbon steel, S20C(AISI 1020), S30C(AISI 1030), 
S40C(AISI 1039) and S50C(AISI 1049) were used for 
this experiment and their components were as shown 
in Table I. Each carbon steel of weight 50kg were 
vacuum melted, cast into 25 kg ingots, forged, heat 
treated as shown in Table [, and shaped into spe- 
cimens. 

3.2. Sensor arrangement 
The applied stress, strain and wave propagating time 
were strictly measured. Fig. 4 shows the arrangement 
of the strain gauges and ultrasonic wave transducers 
used for this experiment. 

Ee, Et 

~--~E g, Et  

Figure 4 Arrangement of sensors. E~, Et; strain gauge, L11 , L22; 
longitudinal wave transducer, S~2 , $2~ ; transverse wave transducer. 
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T A B L E I Chemical composition and heat treatment of test specimens 

Chemical composition (wt %) 

C Si Mn Ni + Cr Cu 

Heat treatment 

$20C 0.22 0.29 0.52 
$30C 0.32 0.31 0.81 
$40C 0.40 0.28 0.78 
$50C 0.49 0.31 0.83 

- 0.01 max 880 ° C 3 h, air cooled 
- 0.01 max 880°C 3h, air cooled 

0.12 0.01 max 860 ° C 3 h, air cooled 
0.12 0.01 max 850°C 3h, air cooled 

Where F is the tensile direction, El and Et are the 
strain gauges for measurement of strain paratlel and 
normal to tensile direction respectively. They were 
attached by the adhesive of cyanoacrylate system. LH 
and L22 a re  the transducers for ultrasonic longitudinal 
waves and &2 and S21 are those for transverse waves. 
The polarization of transverse waves transmitted and 
received by transducer S~2 is normal but that by trans- 
ducer $2~ is parallel to the tensile axis. The piezo- 
electrical resonator of PZT type used as a transducer 
was a plate of 10 x 10mm 2 and the resonance fre- 
quency was 5 MHz. 

3.3. Measurement  method  and apparatus  
An Instron type tensile testing machine, a com- 
puterized strain measurement apparatus, ultrasonic 
wave propagating velocity measurement equipment 
were mainly used. The sing-around method [19] and 
the resonance frequency measurement method [21] 
need high technique to measure wave propagating 
velocity with good accuracy. 

The method of superposing double pulses enables 
one to measure the wave propagating time directly, 
however the apparatus is very complicated [16]. There- 
fore in our experiment, it was measured by compen- 
sating the amplitudes of multi-echoes. Our apparatus 
and the operation were simple and easy to treat and 
gave high precision. 

Fig. 5 shows a schematic diagram of this method. 
The pulser used was the type that discharged an accu- 
mulated electric charge and consisted of a cyristor as 
a switching element. 

The - 3dB bandwidth of the amplifier ranges were 
0.5 to 8.0 MHz. The choice of echoes was carried out 
by using the degree of regularity of the propagating 
time of multi-reflection waves. Those times were 
measured using a comparator system. The counter 
consisted of 100 MHz quartz and gave good accuracy 
because of the time resolution of 10 nsec. 

Pulser Amplifier 

Transduee.rx 2 

Strain m e t e r ~  Strain 

Comparator Counter 

• 1 
[100MHz ) 

Figure 5 Measurement method and the schematic diagram. 
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The multi-echoes were compensated to make their 
level constant, and the time differences from the first 
echo to each echo was measured. The well regulated 
time differences were chosen among them in order to 
eliminate the influence of the sound field in the test 
specimen. Consequently, the reproducible data in the 
order of five figures was accomplished. 

The cross-head speed of the tensile testing machine 
was held constant at 0.03mmmin ~. The load cell 
used for measurement of stress was compensated by 
the standard gauge. The strain of the specimens was 
measured by the strain gauge adhered on the specimen 
surface and recorded by an auto multi digital recorder 
using an alternating current system. At that time, the 
obtained data were not affected by temperature since 
the room temperature was well controlled within 21 to 
22°C throughout the measurement. 

4. Results 
4.1. Relative change of the propagating 

velocity 
Fig. 6 shows the changing ratio of the propagating 
time of the longitudinal and transverse waves along 
the tensile axis for long and short size carbon steel 
specimens of $30C. 
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Figure 6 Changing ratio of propagating time of longitudinal and 
transverse waves along tensile axis for long and short specimens of 
$30C. Length of specimen (O) V n, 130mm, (zx) VII, 180mm (n) VI2 
130ram and (e)  VI2 180mm. 
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Figure 7 Changing ratio of  propagating time when the wave propa- 
gates perpendicularly to tensile axis. (O) V22 (zx) V2~. 

Fig. 7 shows the changing ratio of the propagating 
time when the ultrasonic wave propagates perpen- 
dicular to the tensile axis. The propagating time of the 
longitudinal wave decreased with tensile stress while 
that of transverse wave which was polarized to coin- 
cide with tensile direction increased. The measurement 
of  the transverse wave whose polarization was normal 
to tensile direction could not be done on account of  
data irregularity. The similar results were obtained for 
$20C, $40C and $50C. Table II shows the relative 
change of  propagating velocity obtained by substitut- 
ing the above results into Equations 4, 5 and 8. 

4 .2 .  The  s e c o n d  order elast ic  cons tan t  
Fig. 8 shows the stress-strain relationship of  $30C. eI 
and st denote the strain in the direction parallel and 
transverse to tensile axis, respectively. Stress is a nomi- 
nal value which is the applied tensile load divided by 
cross-sectional area of gauge region of  test specimen. 
Table Ilia shows the second order elastic constants 
(Lam6 constants) 2 and #, obtained from above 
relations by using equations 

vE E 
2 = (1 + v)(1 - 2v)' /~ = 2(1 + v) 

Table IIIb shows the SOE constants obtained by the 
measurement results of wave propagating velocities of  
longitudinal and transverse waves in the direction 
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Figure 8 Stress-strain relation of  S30C. (zx) et, (O) e r. 
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parallel and perpendicular to tensile axis of  unloaded 
specimens. Table IV shows the above wave velocities. 

4.3. The third order elastic constant 
We can obtain the Eulerian TOE constants by putting 
the relative change of  propagating velocity and SOE 
constants into Equations 10 and 12, and Lagrangian 
TOE constants by putting them into Equations 14= 

Table 5 shows these results. The SOE and Eulerian 
TOE constants are plotted against carbon contents as 
shown in Fig. 9. 

The TOE constants are about ten times the SOE 
constants and the values of n largely changed with 
carbon content of  steels. 

5. Cons idera t ions  
Considering that the TOE constants systematically 
change with carbon content in a similar manner as the 
experimental results of  ultrasonic wave propagating 
velocities [21], they were compared as shown in Fig. 9. 
As a result, it is recognized that the values of n in the 
TOE constants are dependent on carbon content 
except for the data of  $20C. On the other hand 
the variations of  SOE constants are about one 
order smaller than the values of n. Since the data 
were treated on the basis of the theory of  isotropic 
materials in this experiment, the specimens were made 

T A B L E I I I The second order elastic constants ( x 103 MPa) 

T A B L E  l I  Relative change of  propagating velocity 

~11 ~22 ~12 ~21 

$20C - 1.856 0.528 - 0 . 0 6 3  - 1.374 $20C 
$30C - 2 . 3 5 1  0.238 - 0 . 8 4 4  - 1.848 $30C 
$40C - 2.004 O. 177 - 0.403 - 1.497 $40C 
$50C - 2.337 0.246 - 0.220 - 1.346 $50C 

(a) Isothermal (b) Adiabatic 
elastic constants elastic constants 

2 IL ,l 

116.8 80.6 112.7 81.6 
110.4 81.3 109,5 82.2 
106.5 82.4 110.! 81.9 
108. I 82.2 110.5 81.8 
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TABLE IV Measured velocities of longitudinal and transverse 
waves (m sec- i) 

VII ~112 V22 g21 

$20C 5926 3225 5934 3225 
$30C 5904 3229 5910 3242 
$40C 5899 3223 5917 3239 
$ 5 0 C  5909 3223 5910 3234 

as isotropic as possible. In order to confirm the isotropy 
of specimens, the wave propagating velocities were 
measured in the direction parallel and perpendicular 
to the longitudinal axis of the unloaded specimens. As 
is obvious from Table IV, the differences between 
them were negligible, so that the specimens could be 
regarded as isotropic for the SOE constants. 

Furthermore the measurement values of n12 and n21, 
or n'12 and n~l were compared to ascertain the isotropy, 
and there were differences as shown in Table V. If  the 
specimens are completely isotropic, n12 and n2~ are 
equal, therefore they are considered as approximate 
isotropies. 

In this method, an isothermal process is combined 
with an adiabatic process, namely, the static stress is 
applied to the specimen in the isothermal state and 
elastic waves propagate through it. According to the 
report by Krasil'nikov [22], the differences between 
isothermal and adiabatic TOE constants are small. 
Those differences of SOE constants were small and 
within experimental error in our experiments as shown 
in Table III, however a further problem is how the 
results from our method differ from the TOE con- 
stants measured in the adiabatic or isothermal con- 
dition only. This problem is related to the measure- 
ment method of TOE constants and the improvement 
of precision of the measurement. 

The measurement precisions of our method are 
affected by those of stress, strain, propagating time 
and changing ratio, machining quality of specimens, 
atmospheric temperature control, etc. Among the 
above factors, the errors of about - 0 . 9 %  in low load 
side and of about 0.3% in high load side were recog- 
nized for the load cell. The measurement precision of 
strain was in the range of 10 -5 to 10 6 as read. Those 
of propagating time were stable and of the order of 
five figures. The changing ratio of propagating time 
were read from Figs 7 and 8, and the reading precision 
was -t-2 to + 3%. The errors of changing ratio of 
propagating time and stress measurement largely 
affect l, m, n, of TOE constants and give maximum 
errors of 30, 10 and 50% on l, m and n, respectively. 

Meanwhile the precision of data by Hughes and 
Kelly on armco iron was reported to be in the order of 
+ 100% [31. 
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Figure 9 T h e  S O E  a n d  E u l e r i a n  T O E  c o n s t a n t s  a g a i n s t  c a r b o n  

con t en t .  

Wave propagating velocities of the increasing 
and decreasing processes of tensile load agreed well 
with each other as shown in Fig. 10. It is considered 
that the deformation was reversible and elastic during 
the test, therefore the change of wave propagating 
velocities corresponding to the elastic deformation 
were measured. 

6. Conclusions 
The theory of wave propagation in a stressed solid was 
applied to the measurement of the ultrasonic wave 
velocity propagating in tensile test specimens of car- 
bon steels containing 0.2 to 0.5% C, and both Eulerian 
and Lagrangian TOE constants were obtained. 

Two samples which were the same in grip size but 
different in gauge length were used in order to eliminate 
complex influences on ultrasonic wave velocity by stress 
distribution at the grip region. The TOE constants 
obtained were about 10 times as large as the SOE 
constants and the values of n showed large variation 
with the component of steels. 

The Eulerian (l, m, n) and Lagrangian (l', m', n') TOE 
constants are written by simple relation including 
Lam6's constant are follows; 

I = 2(2 + 2/0 + ±3(l' + 2m') 

m = - 4 2 - -  12#--  2m' 

n = 1 2 # + n '  

The values of n and n' give an index to determine the 
degree of isotropy of the materials. 

T A B L E  V T h e  E u l e r i a n  a n d  L a g r a n g i a n  t h i r d  e las t i c  c o n s t a n t s  ( x  103 M P a )  

E u l e r i a n  T O E  c o n s t a n t s  

l m //21 //12 

L a g r a n g i a n  T O E  c o n s t a n t s  

l '  m '  n~, nl2 

$ 2 0 C  150.3 - 286 287 304 - 6 9  - 574 - 6 8 0  - 6 6 3  

$ 3 0 C  62.5 - 241 - 183 - 504 - 274 - 588 - 1159 - 1480 

$ 4 0 C  100.0 - 328 80 - 139 - 241 - 543 - 909 - 1128 

$ 5 0 C  67.0 - 243 388 205 - 258 - 588 - 598 - 781 
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Figure 10 Hysteresis curves for the changing ratio 
and strain e t against tensile stress. The points were 
obtained from two measurements  of  increasing 
and decreasing stresses. (O, zx) Increasing load, 

(e ,  A) decreasing load. 
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